Modified Nano-crystalline Ferrites for High Temperature WGS Membrane Reactor Applications

نویسندگان

  • Ataullah Khan
  • Ping Chen
  • P. Boolchand
  • Panagiotis G. Smirniotis
چکیده

In the present study, selected metal ions (M = Cr, Mn, Co, Ni, Cu, Zn, and Ce) were introduced into iron oxide (spinel lattice) and screened for effectiveness for a high-temperature water–gas shift reaction. Simultaneous precipitation of Fe(III) nitrates along with metal nitrate(s) at optimal concentrations resulted in the formation of high-surface area nanosized catalysts. A noticeable interaction between iron and the other substitutent metal was interpreted from the formation of either inverse or mixed spinels of composition A(1−δ)Bδ[AδB(2−δ)]O4. The incorporation of metal cations into the hematite crystal structure modified the magnetic hyperfine field and also influenced the reducibility of hematite particles, as observed in Mössbauer effect and temperature-programmed reduction studies. These effects strongly depend on the nature of incorporated metal cations. Mössbauer hyperfine fields, isomer shifts and transmission electron microscopy findings support nanoscale nature of the catalysts. Amongst catalysts tested, Fe/Cr and Fe/Ce are found to be the most active, with activity approaching equilibrium conversion at high temperatures. © 2007 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High Temperature Water Gas Shift Reaction over Nanocrystalline Copper Codoped-Modified Ferrites

Iron-containing spinels, also known as ferrospinels, are widely used catalysts for the water gas shift (WGS) reaction. The catalytic activity of spinels containing transition metal ions as dopants or modifiers is influenced by the acid base and redox properties of these ions as well as by their site occupancy amongst the octahedral and tetrahedral sites in the spinel structure. It has been esta...

متن کامل

Unexpected Behavior of Copper in Modified Ferrites during High Temperature WGS ReactionAspects of Fe ↔ Fe Redox Chemistry from Mössbauer and XPS Studies

We report dynamic alternation of the redox chemistry of the Fe/ Fe couple in magnetite during high temperature water−gas shift reaction in Cu codoped Mmodified ferrite catalysts. Various hematitic solid solutions of the type Fe2O3−MxOy−CuOx with M = Cr, Ce, Ni, Co, Mn, and Zn are synthesized using the industrially economical and environmentally friendly coprecipitation method. Interestingly, Cu...

متن کامل

Structural, Electrical, and impedance spectroscopy studies of Barium substituted nano calcium ferrites synthesized by solution combustion method.

Barium substituted nanocrystalline ferrites with chemical composition BaxCa1-xFe2O4 (x =0.0 to 0.25) BCAF were prepared by solution combustion method. The phase formation of mixed spinal structured ferrites was confirmed by PXRD analysis. The average crystallite size was calculated using Debye-Scherrer formula and it was found to be in the range of 27-44 nm. Surface morphology was analyzed by S...

متن کامل

Advances on High Temperature Pd-Based Membranes and Membrane Reactors for Hydrogen Purifcation and Production

Membrane technology applied in the chemical and energy industry has the potential to overcome many drawbacks of conventional technologies such as the need of large volume plants and large CO2 emissions. Recently, it has been reported that this technology might become more competitive...

متن کامل

Advanced Membrane Reactors in Energy Systems A Carbon-Free Conversion of Fossil Fuels

The purpose of this project is to develop hydrogen and CO2 selective membranes to allow combination of natural gas reforming with H2 or CO2 separation in separation enhanced reactors, i.e. membrane reactors, for carbon-free hydrogen production or electricity generation. To achieve this, the project comprises three distinct tasks: system and reactor analysis, membrane materials research and cata...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007